

A256861


a(n) = n*(n + 1)*(n + 2)*(n + 3)*(n + 4)*(n^2  n + 6)/720.


1



1, 8, 42, 168, 546, 1512, 3696, 8184, 16731, 32032, 58058, 100464, 167076, 268464, 418608, 635664, 942837, 1369368, 1951642, 2734424, 3772230, 5130840, 6888960, 9140040, 11994255, 15580656, 20049498, 25574752, 32356808, 40625376, 50642592, 62706336
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,2


COMMENTS

This is the case k = n of b(n,k) = n*(n+1)*(n+2)*(n+3)*(n+4)*(k*(n1)+6)/120, where b(n,k) is the nth hypersolid number in 6 dimensions generated from an arithmetical progression with the first term 1 and common difference k (see Sardelis et al. paper).


LINKS

Table of n, a(n) for n=1..32.
D. A. Sardelis and T. M. Valahas, On Multidimensional Pythagorean Numbers, arXiv:0805.4070 [math.GM], 2008.
Index entries for linear recurrences with constant coefficients, signature (8,28,56,70,56,28,8,1).


FORMULA

G.f.: x*(1 + 6*x^2)/(1  x)^8.
a(n) = 6*A000580(n+4) + A000580(n+6). [Bruno Berselli, Apr 15 2015]


MATHEMATICA

Table[n (1 + n) (2 + n) (3 + n) (4 + n) (6  n + n^2)/720, {n, 40}]
Table[Times@@(n+Range[0, 4])(n^2n+6)/720, {n, 40}] (* or *) LinearRecurrence[ {8, 28, 56, 70, 56, 28, 8, 1}, {1, 8, 42, 168, 546, 1512, 3696, 8184}, 40] (* Harvey P. Dale, Sep 25 2019 *)


PROG

(PARI) vector(40, n, n*(n+1)*(n+2)*(n+3)*(n+4)*(n^2n+6)/720) \\ Bruno Berselli, Apr 15 2015


CROSSREFS

Cf. A000580.
Cf. similar sequences listed in A256859.
Sequence in context: A231069 A319235 A341764 * A287221 A119965 A229729
Adjacent sequences: A256858 A256859 A256860 * A256862 A256863 A256864


KEYWORD

nonn,easy


AUTHOR

Luciano Ancora, Apr 14 2015


STATUS

approved



